Repository logo
  • Collections
  • Browse
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. ICI
  3. Publications
  4. Human Physical Activity Recognition using Smartphone Sensors
 
  • Details

Human Physical Activity Recognition using Smartphone Sensors

Journal
Sensors
ISSN
1424-8220
Date Issued
2019-01-23
Author(s)
Voicu, Robert Andrei
Dobre, Ciprian
Băjenaru, Lidia
Ciobanu, Radu-Ioan
DOI
10.3390/s19030458
Abstract
Because the number of elderly people is predicted to increase quickly in the upcoming years, “aging in place” (which refers to living at home regardless of age and other factors) is becoming an important topic in the area of ambient assisted living. Therefore, in this paper, we propose a human physical activity recognition system based on data collected from smartphone sensors. The proposed approach implies developing a classifier using three sensors available on a smartphone: accelerometer, gyroscope, and gravity sensor. We have chosen to implement our solution on mobile phones because they are ubiquitous and do not require the subjects to carry additional sensors that might impede their activities. For our proposal, we target walking, running, sitting, standing, ascending, and descending stairs. We evaluate the solution against two datasets (an internal one collected by us and an external one) with great effect. Results show good accuracy for recognizing all six activities, with especially good results obtained for walking, running, sitting, and standing. The system is fully implemented on a mobile device as an Android application.
Subjects

activity recognition

machine learning

smartphones

ambient assisted livi...

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback